Immobilization of Erwinia sp. D12 Cells in Alginate-Gelatin Matrix and Conversion of Sucrose into Isomaltulose Using Response Surface Methodology
نویسندگان
چکیده
Isomaltulose is a noncariogenic reducing disaccharide and also a structural isomer of sucrose and is used by the food industry as a sucrose replacement. It is obtained through enzymatic conversion of microbial sucrose isomerase. An Erwinia sp. D12 strain is capable of converting sucrose into isomaltulose. The experimental design technique was used to study the influence of immobilization parameters on converting sucrose into isomaltulose in a batch process using shaken Erlenmeyer flasks. We assessed the effect of gelatin and transglutaminase addition on increasing the reticulation of granules of Erwinia sp. D12 cells immobilized in alginate. Independent parameters, sodium alginate concentration, cell mass concentration, CaCl(2) concentration, gelatin concentration, and transglutaminase concentration had all a significant effect (P < 0.05) on isomaltulose production. Erwinia sp. D12 cells immobilized in 3.0% (w/v) sodium alginate, 47.0% (w/v) cell mass, 0.3 molL(-1) CaCl(2), 1.7% (w/v) gelatin and 0.15% (w/v) transglutaminase presented sucrose conversion into isomaltulose, of around 50-60% in seven consecutive batches.
منابع مشابه
Glucosyltransferase production by Klebsiella sp. K18 and conversion of sucrose to palatinose using immobilized cells
The strain Klebsiella sp. K18 produces the enzyme glucosyltransferase and catalyses the conversion of sucrose to palatinose, an alternative sugar that presents low cariogenicity. Response Surface Methodology was successfully employed to determine the optimal concentration of culture medium components. Maximum glucosyltransferase production (21.78 U mL(-1)) was achieved using the optimized mediu...
متن کاملApplication of Taguchi Design and Response Surface Methodology for Improving Conversion of Isoeugenol into Vanillin by Resting Cells of Psychrobacter sp. CSW4
For all industrial processes, modelling, optimisation and control are the keys to enhance productivity and ensure product quality. In the current study, the optimization of process parameters for improving the conversion of isoeugenol to vanillin by Psychrobacter sp. CSW4 was investigated by means of Taguchi approach and Box-Behnken statistical design under resting cell conditions. Taguchi desi...
متن کاملApplication of Taguchi Design and Response Surface Methodology for Improving Conversion of Isoeugenol into Vanillin by Resting Cells of Psychrobacter sp. CSW4
For all industrial processes, modelling, optimisation and control are the keys to enhance productivity and ensure product quality. In the current study, the optimization of process parameters for improving the conversion of isoeugenol to vanillin by Psychrobacter sp. CSW4 was investigated by means of Taguchi approach and Box-Behnken statistical design under resting cell conditions. Taguchi desi...
متن کاملOptimization of Lipase Immobilization
Pseudomonas aeruginosa BBRC-10036 was used for lipase production. The organism secreted the enzyme extracellulary. In order to purify the enzyme, precipitation was done first, and then this lipase has been purified by Ion exchange Chromatography leading to 2.3-fold purification and 11.47% recovery. Lipase from P.aeruginosa was entrapped into Ca-alginate gel beads and effect of independent varia...
متن کاملThe Structural Basis of Erwinia rhapontici Isomaltulose Synthase
Sucrose isomerase NX-5 from Erwiniarhapontici efficiently catalyzes the isomerization of sucrose to isomaltulose (main product) and trehalulose (by-product). To investigate the molecular mechanism controlling sucrose isomer formation, we determined the crystal structures of native NX-5 and its mutant complexes E295Q/sucrose and D241A/glucose at 1.70 Å, 1.70 Å and 2.00 Å, respectively. The overa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011